Finite graphs in which the point neighbourhoods are the
maximal independent sets

A.E. Brouwer

We determine all graphs as in the title.

In [vdH]| certain graphs L, occur. Noticing that they have the property
mentioned in the title, I wondered whether they are the only such graphs. This
note shows that, essentially, this is indeed the case.

For £ < 1, let L, be the graph with vertex set Zsr_; (the integers mod
3k — 1) and adjacencies x ~ y iff y —x € {1,4,7,...,3k — 2}. (Thus, L; is the
complete graph on two vertices, and Ls is the pentagon.) The neighbourhood

of a vertex x is the set N(z) = {y|ly ~ z}. A graph G is called reduced when
distinct vertices have distinct neighbourhoods.

THEOREM 0.1 The finite reduced triangle-free graphs in which each indepen-

dent set 1s contained in a point neighbourhood are precisely the graphs Lj
(k> 1).

PROOF: First we show that the graphs L; have the stated property. That
they are finite, reduced and triangle-free is clear. Now it suffices to show that if
S is an independent set contained in N(x), and SU{y} is independent for some
Yy, y % x,then SU{y} C N(z) for some z. But y =z + 371 —1or y =z + 31
for some i (1 <7 < k—1), and we can take 2z =z + 32 0or 2 = = + 31 — 1,
respectively.

Conversely, let the graph G have the stated property. We show that G ~ L,
for some k£ < 1. Since 0 is independent, G has a vertex, and since a singleton is
independent, each vertex has a neighbour, and since two nonadjacent vertices
have a common neighbour, G has diameter at most 2. Clearly, if G is complete,
then G ~ L;, so we may assume that G has diameter 2.

Step 1. Given two nonadjacent vertices x, y, there is a unique verter z =
o(x;y) such that y ~ z and N(x) "N N(z) = N(z) \ (N(z) N N(y)).

231



PROOF: Theset {y}UN(x)\(N(x)"N(y)) is independent and hence contained
in N(z) for some z. If it is also contained in N(z’), then, since G is reduced,
the vertices z and z’ have distinct neighbourhoods, and we may assume that

z ~ u, 2 % u for some vertex u. But now {x,u,z'} is independent and not
contained in a point neighbourhood. Contradiction.

Step 2. G s regular of valency k, say. If k > 1, then there is a pair of
nonadjacent vertices with k — 1 common neighbours.
PROOF: Let x,y be nonadjacent. If |N(y) \ N(z)| > 1, then choose u €
N(y) \ N(x), u # o(xz;y). By the uniqueness part of the previous step, there
is a vertex v € N(z) \ (N(y) U N(u)), so that also |N(x) \ N(y)| > 1. Now
(N(x)NN(y))U{u,v} is independent, and hence contained in N(z) for some z.
By downward induction on |N(z) NN (y)| it follows that |N(z)| = |N(y)| (since
we have either |[N(z)| = |N(z)NN(y)|+1 = |N(y)|, or, by induction, |N(z)| =
IN(z)| = |N(y)|). Now regularity of GG follows since its complementary graph
G is connected.

Step 3. G =~ Lk
PROOF: Let zg % yo and |N(xg) N N(yp)| = k — 1. Define vertices z;, y;
(i € Z) by y;01 = o(x;;y;) and z; = o(y;;x5-1). Then |[N(z;)) " N(y;)| =k — 1
and N(x;) N N(y;1+1) = {xi-1} = {yix2} for all 2. By inductionon j (1 <5 <
k—1) we see that |N(xg) NN(zx3;)| = k—7, and that zy ~ x1,24,...,23;—2 and
Tr3; ~ T2,Ts,...,T3j—1. Indeed, for j = 1 this is clear, since ¢ = y3. But z3;
and z3,4+3 have the same neighbours except for x3;41, 342, and zp and x3;
have the same neighbours except for the vertices x3;41, 3i42 (0 <1< 5 —1),
SO xo ~ x3j+1 and similarly o ~ z35;43. As long as z¢p and z3; have common
neighbours, it follows that g # z3;+1. However, ¢ and x3;_—; have the same
neighbours, so xg = x3,—1. If there is a vertex z distinct from all z;, then z is

adjacent to either all or none of the z;, contradiction, since G is triangle-free
and connected. O

This theorem can be generalized by deleting the hypothesis that GG is reduced.
Now the conclusion becomes that (G is a coclique extension of one of the Ly. (In
particular, if G is regular, that G is a lexicographic product L . := Li[K,,].)
Probably the finiteness hypothesis can be dropped as well, but the conclusion
becomes more complicated, and I have not investigated this further.

The reason that the graphs Lg ., occur in [vdH] is that (for m > 3) they
have the maximal possible toughness ¢t = n/k — 1 for triangle-free regular
graphs. (The toughness t(G) of a connected non-complete graph G with vertex
set V is by definition min |V \ X|/w(X) taken over all subsets X of V such
that the number of connected components w(X) of X is at least two. Clearly,

t(G) < (V] =2)/2.)

LEMMA 0.2 Let G be a connected non-complete graph. The toughness of the
lexicographic product G|K,,| equals min|V \ X|/w(X), where w(X) is the num-
ber of singleton components of X plus 1/m-th of the number of other compo-
nents of X, and X runs through the subsets of V with w(X) > 1. O
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PROPOSITION 0.3 The toughness of Ly . equals min(2~ 3,2 — —=v77) (K 2
1, m>1).

PROOF: By the above lemma, we only have to investigate G = Lj. Taking
X = N(0) shows that t(G) < (3k—1—k)/k =2—1/k. Taking X = N(0)U{2}
shows that t(G) < (Bk—1)—(k—1)/(k—14+1/m)=2-2/(m(k —1)+1).
Conversely, if {z,y} is an edge of G, then V' \ (N (z)UN (y)) is complete bipartite
or a coclique. Thus, if some subgraph X of G has at least two non-singleton
components, then w(X) = 2/m and |V \ X|/w(X) > 4/(2/m) = 2m > 2 so
that X does not determine the toughness. If X has precisely one non-singleton
component, say containing the edge {0,3t + 1}, then the set S of all vertices s
such that {s} is a component of X is contained in one part of the bipartition
on the vertices nonadjacent to both 0 and 3t + 1; say, S C {3t + 3,...,3k — 3}.
Now |V \ X|/w(X) > |N(S)|/(|S| + 1/m). But when |S| is given, |N(S)]
is minimal when S is ‘consecutive’: S = {3a,3a + 3,...,3a + 3r}, and then
IN(S)|/(|S|+1/m) = (k+7)/(r+ 1+ 1/m). This again is minimal when |S]
is maximal, i.e., for t = 0 and » = k — 2, and then |[N(S)|/(|S| + 1/m) =
2—2/(m(k —1)+ 1). Finally, if X has only singleton components, a similar
but easier argument again shows that we get the smallest quotient by taking
X a maximal coclique, and then this quotient equals 2 — 1/k. O
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